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I. INTRODUCTION

Numerous investigators have noted that slotted stick propellant appears

to provide a higher muzzle velocity for the same charge weight than does 7-
perforated, granular propellant. -3 At the same time, lumped-parameter
modeling of experimental gun firings, typically quite successful in predicting
the performance of granular propellant charges, has not provided similarly
satisfactory simulations of stick propellant firings, even when the propellant
has been slotted to minimize perforation-augmented burning processes. The
charge weight of stick propellant for a given performance level is usually
predicted to be greater than actually required, with gun firings yielding
higher pressures than expected for any given charge weight. This apparent
increase in thermodynamic efficiency for stick propellant suggests that some
mechanism must be involved beyond that of the influence of grain geometry on
the mass generation profile. The investigation reported herein was devised to
identify any such mechanisms.

II. EXPERIMENTAL

A carefully designed set of gun firings was conducted in a 155-mm
howitzer (M199 Cannon) to demonstrate and quantify the increase in muzzle
velocity obtained using stick rather than granular propellant. Slotted stick
propellant was chosen for the test to eliminate perforation-augmented burning
as a major factor in the combustion process, 3 and the granular propellant was
obtained by simply cutting some of the stick propellant to a shorter length.
Thus the compositions and form functions, as well as charge weights, were
identical for both the stick and granular propellant charges tested, reducing

the number of variables involved and simplifying the analysis. M30A1
propellant, Lot RAD 472-10, was employed, both as full-length, 737-mm sticks
and cut into 25-mm-long grains, as shown in Figure 1. There were four charges
made from the full-length stick (LSl,..,LS4) and four charges from the

shortened "grains" (SSI,..,SS4); in addition, four standard (7-perforated
granular) M203 charges were fired to provide baseline data. Propellant for

the test charges (LSX and SSX) was weighed to 11.04 kg (either to within one

SSX grain or by cutting one of the LSX sticks), a value previously determined
in probe firings to give the appropriate M203 performance level. The standard
M203 charges were all downloaded and brought to a weight of 11.84 kg (again,

to within one grain). Further, packaging and igniter components for all three

groups of charges tested were taken from one lot of M203 charges. Finally,
inert-loaded MI01 projectiles, adjusted to a weight of 43.08 kg and loaded to

an average seating distance of 82.3 cm from the spindle face, were used for
all the firings.

IT.C. Minor, "Mitigation of Ignition-Induced Two-Phase Flow Dynamics in Guns
Through the Use of Stick Propellant," ARBRL-TR-02508, Ballistic Research

Laboratory, USA ARRADCOM, Aberdeen Proving Ground, MD, August 1983. ADA-133685.

2 A. Grabowsky, S. Weiner, and A. Beardell, "Closed Bomb Testing of Stick

Propellant Charge Assemblies," 17th JANNAF Combustion Meeting, CPIA

Publication 329, Vol II, pp. 119-124, November 1980.

3F.W. Robbins and A.W. Horst, "Continued Study of Stick Propellant Combustion

Processes," ARBRL-MR-03296, Ballistic Research Laboratory, USA ARRADCOM,
Aberdeen Proving Ground, MD, July 1983. (AD A133004).
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143 mm

BASE PAD * SALT BAG
S P CENTERCORE IGNITOR BAG AND LINER
IL 737 mm -,

Figure 1. Configurations of Test Charges

The firings were performed at the Ballistic Research Laboratory's Sandy
Point (R-18) Test Facility on 20 December 1982. The M199 cannon was
instrumented with twelve Kistier 607C2 pressure gages (two each at three
axial locations in the chamber and six at downbore locations, as shown in
Figure 2). The same gages and instrumentation components were employed
throughout the tests in order to best capture the relative differences among

groups. A Doppler velocimeter was used to measure in-tube velocities, and
induction coils were employed to determine muzzle velocities. Subsequent
testing was also performed using telemetry-instrumented projectiles to provide
on-board measurements of projectile base pressure and acceleration throughout

the in-bore trajectory.

In support of this investigation, closed bomb firings were also conducted
to determine burning rates for the LAD 47 2-10 propellant. Testing was done
with the shortened, 25-mam-long grains and, since the propellant was slotted,
the data were assumed to be applicable to the full-length sticks as well. A
composite of results from four closed bomb firings, along with measured grain
dimensions and calculated thermodynamic data, is provided in Figure 3.
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DISTANCE FROM SPINDLE FACE (cm)
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Figure 2. Locations of Pressure Gages in 155-mm, M199 Cannon
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Figure 3. Burning Rate of M30AI Propellant, Lot RAD 472-10
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III. RESULTS

Muzzle velocities and maximum breech pressures for the three
configurations are tabulated in Table 1.

TABLE 1. SUMMARY OF FIRING DATA

Type Maximum Muzzle Type Maximum Muzzle Type Maximum Muzzle
Breech Velocity Breech Velocity Breech Velocity
Pressure (m/s) Pressure (m/s) Pressure (m/s)
(MPa) (MPa) (MPa)

SSI 347.8 815.8 LSl 335.7 815.1 M203 330.1 823.8
SS2 349.5 815.0 LS2 333.3 813.5 M203 326.3 818.8
SS3 344.3 812.0 LS3 335.5 813.5 M203 324.9 817.2
SS4 346.5 812.5 LS4 330.2 814.3 M203 329.8 820.7

Average values:
SSX 347.0 813.8 LSX 333.7 814.1 M203 327.8 820.1
Standard deviations:

(2.19) (1.86) (2.56) (0.55) (2.58) (2.84)

Table 2 provides a compilation of the average maximum pressures recorded
at each gage location. Values for the first four provide the loci of maximum
pressures for the chamber and rear portion of the tube. The gages at
positions greater than 149.6 cm are uncovered after maximum chamber pressure
occurs; values reported at these locations provide data needed for
construction of a downbore base pressure versus travel curve.

TABLE 2. MAXIMUM PRESSURES AT SPECIFIED GAGE LOCATIONS

DISTANCE FROM PRESSURE PRESSURE
SPINDLE FOR SSX FOR LSX

(cm) (MPa) (MPa)

0.0 347 334
41.7 332 321
83.3 322 296

149.6 302 290
256.3 189 189
332.5 142 143
408.7 109 117
484.9 90 92
576.3 65 67

A finjl presentation of experimental data is given in Table 3, which
provides, as a function of projectile travel (determined by passage of the
various downbore gages), average values of pressure recorded at the breech and
at the appropriate downbore pressure gages. These data were then used to
establish discrete-time, breech and projectile base pressure versus travel
curves for subsequent, detailed comparison of stick and granular slotted
propellant firings.

12



TABLE 3. BREECH AND PROJECTILE BASE PRESSURES AS A FUNCTION OF TRAVEL

PROJECTILE BREECH PROJECTILE
TRAVEL PRESSURE BASE PRESSURE

(cm) (MPa) (MPa)
SSX LSX SSX LSX

58 333 328 302 290
165 216 231 189 189
241 160 163 142 143
318 114 111 109 117
394 92 88 90 92
485 71 71 65 67

IV. ANALYSIS AND DISCUSSION

The above firings were modeled using both a lumped-parameter interior
ballistic computer code (IBHVG, a descendant of the Baer and Frankle code'), 4

and a one-dimensional, two-phase flow interior ballistic code (NOVA). 5 All
input parameters were independently determined. Values for the burning
rates, the thermodynamic parameters, the barrel resistance curve, and the
chamber dimensions were identical for each code. Additional inputs required
for the NOVA code (e.g., friction factor, Poisson ratio, and the speed of
sound in the solid aggregate) were again determined from independent
measurements or taken to be the best available values. In an attempt to
maintain use of the same data bases, neither code considered the presence of
the salt bag or other parasitic components. The major difference in
treatments thus dealt with the lumped-parameter (i.e., "well-stirred")
Lagrangian picture of the gas-solid mixture provided by IBHVG versus the full
multiphase flow description of NOVA (including flamespread, detailed treatment
of pressure gradients, and explicit recognition of propellant motion). A
comparison of calculated and experimental results is provided in Table 4.

4 P.G. Baer and J.M. Frankle, "The Simulation of Interior Ballistic Performance
of Guns by Digital Computer Program," BRL R 1183, USA Aberdeen Research and
Development Center, Ballistic Research Laboratories, Aberdeen Proving Ground,
MD, December 1962. AD-299980.

5P.S. Gough, "Extensions to NOVA Flamespreading Modeling Capacity," PGA-TR-81-
2, Paul Gough Associates, Inc., Portsmouth, NH, April 1981.
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TABLE 4. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS

GRANULAR (SSX) STICK (LSX)

BREECH MUZZLE BREECH MUZZLE
PRESSURE VELOCITY PRESSURE VELOCITY

(MPa) (m/s) (MPa) (m/s)

EXPERIMENTAL 347 814 334 814

IBHVG 348 816 327 808

NOVA 342 816 332 821

We note that IBHVG predicts that the muzzle velocity for the stick
firings should be 8 m/s less than for the granular, yet the experimental
values obtained were the same. The probability of the velocity difference
actually being greater than 4 m/s, assuming normal populations and using the
3tandard deviations from Table I, turns out to be less than 0.1%, suggesting
this disparity to be significant. An accepted use of lumped-parameter
interior ballistic codes is the design of propellant grain geometry. After
matching results to an existing set of firings, calculations are then
typically performed with different propellant grain geometries with the
expectation that the calculated changes in the maximum pressure and velocity
will be correct, both in direction and in approximate magnitude. This is not
the case here, where IBHVG results indicate a need for other physics beyond
that associated only with the influence of grain geometry on the mass
generation profile. The NOVA calculations, while not providing quite as good
a match to the granular propellant firing data as does IBHVG, do suggest the
influence of some such additional physical process, since an increase in
velocity at a reduced maximum pressure is indicated for the stick charge.

Some insight into this difference between granular and stick propellant
charge phenomenology can be gained by a detailed comparison of the
experimental data to corresponding NOVA calculations, which allow us to infer
information, such as gas-velocity profiles and solid-phase motion, not easily
measured in the gun. First of all, we note from these (Table 2) and earlier
firings that the loci of maximum pressures in the gun chamber and rear portion
of the tube are quite different for the two propellant geometries. More
structure is noted with the stick charge, even though recorded maxima occur
within 0.5 ms of one another. As revealed in Figure 4, NOVA simulations
capture this effect quite well.

This additional structure appears to accompany the formation of a large
region of ullage which opens up between the forward boundary of the bundle of
stick propellant and the base of the projectile as it moves down the bore and
leaves the propellant behind. This event might be compared to a sueien
enlargement in the cross-sectional area of a pipe through which gas is
flowing. The same effect is not predicted to occur with granular propellant
because increased interphase drag forces tend to distribute the propellant
throughout most of the region, both eliminating the discontinuity in area and
providing mass addition (via combustion) in this forward region as well.

14
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Figure 4. Loci of Maximum Pressures

Figure 5, constructed from the data of Table 3, also calls attention to
the fact that breech pressures after the time of maximum chamber pressure are
higher for the stick than for the granular propellant. Such behavior is
usually attributed to a more progressive grain geometry. However, NOVA code
results suggest another mechanism to be operative in this case, again finding
its origin in the reduced propellant motion, more than in the different
burning surface profile, associated with the stick geometry. While initial
loading densities for stick and granular charges may be the same, after
significant projectile motion, the "effective" loading densities might be
quite different. The well-dispersed granular propellant can then deposit its
combustion products throughout most of the volume between breech face and
projectile base, but the stick propellant (as long as it remains intact) must
burn in a far more localized region, with a finite time required to
communicate information about this local accumulation of gases to distant
portions of the tube (similar to a nozzleless rocket). This same effect was
also observable upon comparison of experimental breech pressure versus time
curves for the granular and stick firings (not shown here).

We next call attention to the fact that, if we plot the discrete data for
experimental base pressure versus projectile travel (see Figure 6), the
pressure at the base of the projectile for the stick firings shows an
unexpected rise corresponding to the 327-cm position. The NOVA simulations
again allow us to interpret this event. Since the stick firings show a
slightly lover peak breech pressure but a higher breech pressure shortly
thereafter (as explained above), predicted values of projectile travel at
burnout turn out to be within 15 cm (262 cm for stick versus 277 cm for

15
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Figure 5. Breech Pressure Versus Travel - Experimental
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Figure 6. Projectile Base Pressure Versus Travel - Experimental
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granular) of one another. Even when the projectile accelerated by the stick
charge reaches the same position (277 cm), NOVA predicts it to be moving 5.5
m/s slower. (Doppler measurements performed during this program corroborated
this trend.) Why then, after burnout, does the projectile continue to be
accelerated faster for the stick charge than the granular charge? We recall
that Figure 6 previously confirmed a higher downbore pressure for the stick
propellant charge long after burnout. Again, we formulate a hypothesis
associated with the discontinuous distribution of stick propellant in the gun
tube, throughout its burning. We already noted its impact on pressure-distance
profiles in the gun chamber (Figure 4); NOVA simulations reveal, in addition
to this structure in the pressure field, a highly non-Lagrangian gas-velocity
profile at burnout, shown in Figure 7, as well. Subsequent hydrodynamics can
be assured to propagate this structured environment downstream, resulting in a
temporarily increased acceleration relative to that encountered by the
projectile experiencing the more "Lagrangian" environment provided by the
granular propellant charge. Figure 8 shows the calculated gas-velocity
profiles at the moment the projectile exits the muzzle.

Finally, we add that pressure- and accelerometer-instrumented projectiles

were also fired using both the LSX and SSX charges. Figure 9 displays breech
and on-board base pressure versus distance profiles for these firings,
confirming the earlier results provided by discrete-location gages. Note
particularly the excess in base pressure over that at the breech when the
projectile is at about 300 cm of travel. Corresponding NOVA results are
provided as Figure 10. Experimental and calculated pressure versus travel
data for the granular charge, displayed in Figures 11 and 12 respectively,
reveal profiles more nearly approximating the classical form.

V. CONCLUSIONS

Based on a detailed analysis of the experimental data described above,
with added insight provided by concurrent NOVA code simulations of the
firings, wc conclude that there are two major contributors to the higher
performance efficiency exhibited by stick propellant in large-caliber guns.
The first is an "artificial progressivity" resulting from higher post-peak
chamber pressures associated with the more localized burning of the stick
propellant (as opposed to that of a longitudinally distributed, fluidized bed
of granular propellant). Thus, while the initial loading densities of the two
charges may be nearly identical, the "apparent" free volume associated with
burning of the stick propellant after significant projectile motion may be
significantly less than that for the granular propellant charge. The net
results are higher local pressures and faster burning of the propellant
remaining after peak pressure, allowing more time to extract "work" from the
combustion gases. Interestingly enough, though this phenomenon is related to
the reduced interphase drag of the stick geometry which leads to less motion
of the solid phase, this behavior may still be considered a classical effect,
in that its influence may be accounted for, to some extent, in a classical,
lumped-parameter interior ballistic model by simply altering the pressure at
which the propellant burns from the space-mean pressure to some value more
representative of the local environment. (An accompanying change in the energy
equation to reduce the contribution assigned to the kinetic energy of the
solid phase is also recommended.)

17
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Figure 7. NOVA Predictions of Gas-Velocity Profiles at Propellant Burnout
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Figure 8. NOVA Predictions of Gas-Velocity Profiles at Projectile Exit
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Figure 9. Breech and On-Board Projectile Base Pressures Versus Travel for
a Stick Propellant (LSX) Charge
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Figure 10. NOVA Prediction of Breech and Projectile Base Pressures Versus
Travel for a Stick Propellant (LSX) Charge
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Figure 11. Breech and On-Board Projectile Base Pressures Versus Travel for
a Granular Propellant (SSX) Charge
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Figure 12. NOVA Prediction of Breech and Projectile Base Pressures Versus
Travel for a Granular Propellant (SSX) Charge.
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The second effect finds its origin in this same difference in the

distribution of the solid phase between stick and granular propellant during

the combustion phase; however, it clearly requires a hydrodynamic treatment of
the interior ballistic cycle to estimate its importance. This phenomenon
might be most easily understood by considering the nature of the gas velocity
and pressure profiles in the tube at the time of propellant burnout. In the
case of the granular propellant, a "Lagrangian" picture prevails: a nearly
linearly increasing velocity profile between breech face and projectile base,

with no abrupt changes in slope, with a correspondingly smooth, monotonically
decreasing pressure profile. Conditions at burnout for the stick propellant
charge are, however, quite different. Data presented in the previous sections
reveal significant structure in the pressure profile, with the NOVA code

providing similar information about the expected gas-velocity profile as well.

If one considers these two pictures (i.e, stick versus granular profiles at
burnout) as differing initial conditions to an ensuing single-phase,
hydrodynamic event, it is quite easy to determine that the velocity of the

projectile launched by the stick propellant charge upon muzzle exit may
conceptually be higher or lower than that obtained with the granular charge,
depending on the length of the gun tube. In the few, large-caliber systems
studied to date, however, the stick propellant charge has always provided the

higher muzzle velocity.
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